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Abstract
We investigate the accuracy of statistical-mechanical approximations for
the estimation of hyperparameters from observable data in probabilistic
image processing, which is based on Bayesian statistics and maximum
likelihood estimation. Hyperparameters in statistical science correspond to
interactions or external fields in the statistical-mechanics context. In this paper,
hyperparameters in the probabilistic model are determined so as to maximize
a marginal likelihood. A practical algorithm is described for grey-level image
restoration based on a Gaussian graphical model and the Bethe approximation.
The algorithm corresponds to loopy belief propagation in artificial intelligence.
We examine the accuracy of hyperparameter estimation when we use the Bethe
approximation. It is well known that a practical algorithm for probabilistic
image processing can be prescribed analytically when a Gaussian graphical
model is adopted as a prior probabilistic model in Bayes’ formula. We are
therefore able to compare, in a numerical study, results obtained through mean-
field-type approximations with those based on exact calculation.
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1. Introduction

Some statistical-mechanical models and techniques are useful in information processing [1].
In particular, many physicists and computer scientists are interested in the application of
advanced mean-field methods to create new iterative algorithms for solving certain practical
information processing problems [2]. In the area of artificial intelligence, belief propagation
has been investigated as a tool for probabilistic inference [3, 4]. The mathematical structure
of belief propagation is basically same as the transfer matrix method for classical spin systems
on lattices with tree structures in statistical mechanics [5]. In statistics and computer science,
the classical spin systems are interpretable as graphical models. In some important problems
in computer science, we have to treat graphical models on lattices with loops. Some computer
scientists have also applied belief propagation to graphical models on lattices with loops
and have proposed some approximate algorithms [6, 7]. They refer to this as loopy belief
propagation. Some statistical physicists have pointed out that the loopy belief propagation is
equivalent to the Bethe approximation in statistical mechanics [8, 2]. Yedidia et al [9] proposed
an update rule for generalized belief propagation and showed that the rule is equivalent to the
cluster variation method in statistical mechanics.

Freeman et al [10] applied generalized belief propagation to some computer vision
approaches. Many approaches that use generalized belief propagation are based on
probabilistic models involving Markov random fields and Bayes’ formula [11, 12]. It is well
known that probabilistic image processing is useful for many practical computer vision
problems [13, 14]. The probabilistic models are equivalent to classical spin systems with
short-range interactions and spatially non-uniform external fields [15]. Thus, advanced mean-
field methods, including the Bethe approximation, are very useful in probabilistic image
processing based on Bayes’ formula and Markov random fields.

Weiss and Freeman [7] investigated the accuracy of the Bethe approximation in
probabilistic image restoration when a Gaussian graphical model is adopted as the a priori
probabilistic model. In this case, we can derive an exact expression for the restored image by
using the multi-dimensional Gauss integral formula and the discrete Fourier transformation
[15, 16, 20]. In [7], Weiss and Freeman investigated the average and the variance of the random
variable of the light intensity at each pixel in computer vision and concluded that the accuracy
of the average is good but that of the variance is not adequate if the Bethe approximation is
used.

In probabilistic image restoration, an a posteriori probability distribution and a marginal
likelihood are constructed based on Bayesian statistics and maximum marginal likelihood
estimation. The a posteriori probability distribution corresponds to a classical spin system in
statistical mechanics. The input is a degraded image and the output is both the corresponding
restored image and a set of estimates of hyperparameters which correspond to interaction
parameters in the classical spin systems. The hyperparameters can be determined so as
to maximize a marginal likelihood [21, 22]. The restored image is determined from the
a posteriori probability distribution based on the estimated set of hyperparameters. The
implication of the results in [7] is that, although for fixed values of the hyperparameters
the restored images obtained by the exact expression and the Bethe approximation are very
similar, the accuracy of the marginal likelihood obtained by the Bethe approximation may not
be good enough.

Our main purpose in the present paper is to assess the accuracy of the estimates obtained
from the maximization of marginal likelihood by means of the Bethe approximation in grey-
level image restorations. In order to fulfil the above goal, we mainly discuss a solvable
probabilistic model, for which there is exact analytical treatment, rather than more realistic
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models. Such solvable models are often unrealistically simple. However, by comparing the
results obtained using approximations with those from the exact calculations, we can assess
the accuracy of the approximate methods explicitly through numerical experiments. In the
present paper, we consider grey-level image restoration, formulated by means of the Bayesian
approach, and we adopt additive white Gaussian noise and a Gaussian graphical model as the
degradation process and the a priori probability model respectively. It is assumed that the
intensity at each pixel can take any real value. We compare maximum marginal likelihood
estimation based on the Bethe approximation with the versions based on the mean-field
approximation and on the exact expression for the marginal likelihood that is available in this
scenario.

The present paper is organized as follows. In section 2, we summarize the basic framework
of Bayesian image restoration and maximization of the marginal likelihood for hyperparameter
estimation based on a Gaussian graphical model. In section 3, we give the schemes for the
calculation of the marginal likelihood if we use the mean-field approximation and the Bethe
approximation. Section 4 describes numerical experiments and section 5 provides concluding
remarks.

2. Probabilistic image processing based on a gaussian graphical model

In computer vision, images are typically defined on a set of points arranged on a rectangular
lattice. Each point is called a pixel. At each pixel, the intensity of light is represented as
an integer or a real number. We consider an image on a rectangular lattice �≡{(x, y)|x =
1, 2, . . . ,M, y = 1, 2, . . . , N} such that the intensity at each pixel takes a real value in the
range (−∞, +∞). Here, x and y denote the spatial coordinates of pixels. A monochrome
digital image is then expressed as a two-dimensional light intensity function fx,y , where fx,y

is proportional to the brightness of the image at the point (x, y). The rectangular lattice � is
assumed to have periodic boundary conditions in both x- and y-directions. The intensities at
pixel (x, y) in the original image and the degraded image are regarded as random variables
denoted by Fx,y and Gx,y , respectively, and the random fields of intensities in the original
image and the observed, degraded image are represented by F ≡ {Fx,y |(x, y) ∈ �} and
G ≡ {Gx,y |(x, y) ∈ �}, respectively. The actual original image and degraded image are
denoted by f = {fx,y} and g = {gx,y}, respectively.

The probability density for the original image f , P(F = f), is called the a priori
probability density of the image. As a consequence of Bayes’ formula, the a posteriori
probability density P(F = f |G = g), that the original image is f when the given degraded
image is g, is expressed as

P(F = f |G = g) = P(G = g|F = f)P(F = f)∫
P(G = g|F = z)P(F = z) dz

, (1)

where
∫

dz ≡ ∏
(x,y)∈�

∫ +∞
−∞dzx,y . The probability P(G = g|F = f) is the conditional

probability density that the degraded image is g when the original image is f , and it describes
the degradation process.

In the present paper, it is assumed that the degraded image g is generated from the original
image f by the addition of white Gaussian noise with mean 0 and variance σ 2, so that

P(G = g|F = f , σ ) ≡
(

1

2πσ 2

) |�|
2 ∏

(x,y)∈�

exp

(
− 1

2σ 2
(fx,y − gx,y)

2

)
, (2)
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where |�| is the total number of pixels6. Moreover, the a priori probability density that the
original image is f is assumed to be

P(F = f |α) ≡ 1

ZPR(α)

∏
(x,y)∈�

exp

(
−1

2
α(fx,y − fx+1,y)

2 − 1

2
α(fx,y − fx,y+1)

2

)
, (3)

which represents local spatial correlation among the pixel intensities. The denominatorZPR(α)

in equation (3) is a normalization constant which is defined by

ZPR(α) ≡
∫ ∏

(x,y)∈�

exp

(
−1

2
α(fx,y − fx+1,y)

2 − 1

2
α(fx,y − fx,y+1)

2

)
dz. (4)

By substituting equations (2) and (3) into equation (1), we obtain

P(F = f |G = g, α, σ ) = 1

ZPOS(g, α, σ )
exp(−E(f |g, α, σ )), (5)

where

E(f |g, α, σ ) ≡
∑

(x,y)∈�

(
1

2σ 2
(fx,y − gx,y)

2 +
1

2
α(fx,y − fx+1,y)

2 +
1

2
α(fx,y − fx,y+1)

2

)
, (6)

ZPOS(g, α, σ ) ≡
∫

exp(−E(z|g, α, σ )) dz. (7)

In the maximum likelihood approach, values for the hyperparameters α and σ are
determined so as to maximize the marginal likelihood P(G = g|α, σ ), where

P(G = g|α, σ ) ≡
∫

P(G = g|F = z, σ )P(F = z|α) dz. (8)

We denote these maximizers by α̂ and σ̂ :

(̂α, σ̂ ) = arg max
(α,σ )

P(G = g|α, σ ). (9)

Given the estimates α̂ and σ̂ , the restored image f̂ = {f̂ x,y |(x, y) ∈ �} is determined by

f̂ x,y ≡
∫

zx,yP(F = z|G = g, α̂, σ̂ ) dz. (10)

This way of producing a restored image is called maximum posterior marginal estimation
[23, 24]. (Strictly speaking the formula in (10) represents the posterior marginal expectation,
but it also provides the ‘maximum’ because of the Gaussian nature of the posterior.)

The marginal likelihood P(G = g|α, σ ) can be expressed in terms of the free energies
FPOS(g, α, σ ) ≡ −ln(ZPOS(g, α, σ )) and FPR(α) ≡ −ln

(
ZPR(α)

)
as follows:

ln(P(G = g|α, σ )) = ln(ZPOS(g, α, σ )) − ln(ZPR(α)) − |�|ln(
√

2πσ)

= −FPOS(g, α, σ ) + FPR(α) − |�|ln(
√

2πσ). (11)

If we use the multi-dimensional Gaussian integral formula and the discrete Fourier
transformation, the marginal likelihood P(G = g|α, σ ) and the restored image f̂ x,y can
be expressed [15–19] as follows,

ln(P(G = g|α, σ )) = −|�|
2

ln(2π) − 1

2

∑
(p,q)∈�

ln(1 + ασ 2γ (p, q)) +
|�|
2

ln(α)

+
1

2

∑
(p,q)∈�

ln(γ (p, q)) − 1

2

∑
(p,q)∈�

|G(p, q)|2 αγ (p, q)

1 + ασ 2γ (p, q)
, (12)

6 We denote the number of whole elements belonging to a set A by |A|.
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and

f̂ x,y = 1√|�|
∑

(p,q)∈�

1

1 + α̂ σ̂ 2γ (p, q)

(
cos

(
2πpx

M
+

2πqy

N

)
Re(G(p, q))

+ sin

(
2πpx

M
+

2πqy

N

)
Im(G(p, q))

)
, (13)

where

G(p, q) ≡ 1√|�|
∑

(x,y)∈�

gx,y exp

(
−i

2πpx

M
− i

2πqy

N

)
, (14)

γ (p, q) ≡ 4 − 2cos

(
2πp

M

)
− 2cos

(
2πq

N

)
. (15)

Thus, in the present framework there are closed-form expressions for the marginal
likelihood and the restored image, when additive white Gaussian noise and the Gaussian
graphical model are adopted as the degradation process and the prior probabilistic model,
respectively. By applying the mean-field and Bethe approximations to the calculation of the
marginal likelihood P(G = g|α, σ ) and the restored image f̂ x,y , we will be able to measure
the accuracy of the advanced mean-field methods, relative to the exact treatment.

3. Mean-field and Bethe approximations

In this section, we present both the mean-field and the Bethe approximations for probabilistic
models of the general form

ρ(f) = 1

Z
∏

(x,y)∈�

ψx,y(fx,y)φ(fx,y, fx+1,y)φ(fx,y, fx,y+1) (16)

where

ψx,y(ξ) ≡ exp
(− 1

2β(ξ − gx,y)
2), (17)

φ(ξ, ξ ′) ≡ exp
(− 1

2α(ξ − ξ ′)2
)
, (18)

and

Z ≡
∫ ∏

(x,y)∈�

(ψx,y(zx,y)φ(zx,y, zx+1,y)φ(zx,y, zx,y+1)) dz. (19)

By setting β = 1/σ 2, we obtain the free energy FPOS(g, α, σ ) ≡ −lnZPOS(g, α, σ ) as
F ≡ −lnZ . By setting β = 0, we obtain the free energy FPR(α) ≡ −lnZPR(α) as F ≡ −lnZ .

For the purpose of the mean-field approximation, we introduce the average of fx,y with
respect to ρ(f), defined by

mx,y ≡
∫

zx,yρ(z) dz. (20)

By setting β = 1/σ 2, we obtain the restored image f̂ as {mx,y |(x, y) ∈ �}. Now we assume
that, with high probability, the approximate equalities (fx,y − mx,y)(fx+1,y − mx+1,y) � 0 and
(fx,y − mx,y)(fx,y+1 − mx,y+1) � 0 are valid. These equalities can be rewritten as

fx,yfx+1,y � mx,yfx+1,y + mx+1,yfx,y − mx,ymx+1,y (21)

fx,yfx,y+1 � mx,yfx,y+1 + mx,y+1fx,y − mx,ymx,y+1. (22)
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By substituting equations (21) and (22) into equations (19) and (20), we obtain

mx,y �
βgx,y + α

∑
(x ′,y ′)∈cx,y

mx ′,y ′

β + 4α
(23)

and

F = −lnZ � −
∑

(x,y)∈�

1

2
ln(2π) − 1

2
ln(β + 4α) +

(
βgx,y + α

∑
(x ′,y ′)∈cx,y

mx ′,y ′
)2

2(β + 4α)

− 1

2
βgx,y

2 − αmx,ymx+1,y − αmx,ymx,y+1

 . (24)

Here cx,y ≡ {(x ± 1, y), (x, y ± 1)} is the set of all the nearest-neighbour pixels of (x, y).
In dealing with equations (23) and (24), the free energy F is obtained by solving the
simultaneous fixed-point equations (23) numerically and by substituting the set of solutions
{mx,y |(x, y) ∈ �} into the right-hand side of equation (24). The simultaneous fixed-point
equations (23) are solved by the following iterative algorithm:

Iterative algorithm for solving the simultaneous fixed-point equations (23)

Step 1. Set r ← 0 as an initial value.
Step 2. Update r ← r + 1 and

ax,y(r)←
βgx,y + α

∑
(x ′,y ′)∈cx,y

ax ′,y ′(r − 1)

β + 4α
((x, y) ∈ �). (25)

Step 3. Update R ← r and mx,y ← ax,y(R) ((x, y) ∈ �). Stop if∑
(x,y)∈�

|ax,y(r) − ax,y(r − 1)| < ε, (26)

for prescribed ε, and go to step 2 otherwise.

It is usually adequate to set ε = 10−6. In the denominator of equation (25), the summation∑
(x ′,y ′)∈cx,y

ax ′,y ′(r) can be evaluated in O(1) time per pixel (x, y), because the number of
elements in the set cx,y is equal to 4 per pixel in the present paper. Hence the simultaneous
update rules given in equation (25) evaluate O(|�|) computations so that a total of O(|�|)
computations are required per update.

For the Bethe approximation, we introduce two types of marginal probability densities,
defined by

ρx,y(fx,y) ≡
∫

δ(fx,y − zx,y)ρ(z) dz, (27)

ρx ′,y ′
x,y (fx,y, fx ′,y ′) = ρ

x,y

x ′,y ′(fx ′,y ′ , fx,y) ≡
∫

δ(fx,y − zx,y)δ(fx ′,y ′ − zx ′,y ′)ρ(z) dz. (28)

For consistency, these probability densities should satisfy∫ +∞

−∞
ρx,y(ζ ) dζ =

∫ +∞

−∞

∫ +∞

−∞
ρx+1,y

x,y (ζ, ζ ′) dζ dζ ′

=
∫ +∞

−∞

∫ +∞

−∞
ρx,y+1

x,y (ζ, ζ ′) dζ dζ ′ = 1 ((x, y) ∈ �) (29)
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ρx,y(ξ) =
∫ +∞

−∞
ρx+1,y

x,y (ξ, ζ ) dζ =
∫ +∞

−∞
ρx,y+1

x,y (ξ, ζ ) dζ

=
∫ +∞

−∞
ρ

x,y

x−1,y(ζ, ξ) dζ =
∫ +∞

−∞
ρ

x,y

x,y−1(ζ, ξ) dζ ((x, y) ∈ �, ξ ∈ (−∞, +∞)).

(30)

The Bethe free energy for a probabilistic model of the form given in equation (16) is given by

FBethe
[{

ρx,y, ρ
x+1,y
x,y , ρx,y+1

x,y

∣∣(x, y) ∈ �
}] ≡

∑
(x,y)∈�

Fx,y[ρx,y]

+
∑

(x,y)∈�

(
Fx+1,y

x,y

[
ρx+1,y

x,y

] − Fx,y[ρx,y] − Fx+1,y[ρx+1,y]
)

+
∑

(x,y)∈�

(
Fx,y+1

x,y

[
ρx,y+1

x,y

] − Fx,y[ρx,y] − Fx,y+1[ρx,y+1]
)
, (31)

where

Fx,y[ρx,y] ≡
∫ +∞

−∞
ρx,y(ζ )ln

(
ρx,y(ζ )

ψx,y(ζ )

)
dζ, (32)

Fx ′,y ′
x,y

[
ρx ′,y ′

x,y

] ≡
∫ +∞

−∞

∫ +∞

−∞
ρx ′,y ′

x,y (ζ, ζ ′)ln

(
ρ

x ′,y ′
x,y (ζ, ζ ′)

ψx,y(ζ )φ(ζ, ζ ′)ψx ′,y ′(ζ ′)

)
dζ dζ ′. (33)

The approximate forms of the marginal probabilities
{
ρx,y, ρ

x+1,y
x,y , ρ

x,y+1
x,y

∣∣(x, y) ∈ �
}

are

derived from the extremum conditions of the Bethe free energy FBethe
[{

ρx,y, ρ
x+1,y
x,y , ρ

x,y+1
x,y

∣∣
(x, y) ∈ �

}]
with respect to the marginal probability distributions

{
ρx,y, ρ

x+1,y
x,y , ρ

x,y+1
x,y

∣∣
(x, y) ∈ �

}
under the constraints given in equations (29) and (30). The marginal probability

densities can be given approximately by expressions of the forms

ρx,y(ξ) � 1

Zx,y

ψx,y(ξ)
∏

(x ′,y ′)∈cx,y

Mx ′,y ′
x,y (ξ), (34)

ρx ′,y ′
x,y (ξ, ξ ′) � 1

Zx ′,y ′
x,y

ψx,y(ξ)φ(ξ, ξ ′)ψx ′,y ′(ξ ′)

×
 ∏

(x ′′,y ′′)∈cx,y\(x ′,y ′)

Mx ′′,y ′′
x,y (ξ)

 ∏
(x ′′,y ′′)∈cx′ ,y′ \(x,y)

Mx ′′,y ′′
x ′,y ′ (ξ ′)

 . (35)

Here Zx,y and Zx ′,y ′
x,y are the normalization constants of ρx,y(ξ) and ρ

x ′,y ′
x,y (ξ, ξ ′), respectively.

Though these forms may not be so familiar to some physicists, ln
(
Mx ′,y ′

x,y (ξ)
)

corresponds
to the effective field from (x ′, y ′) to (x, y) in the conventional Bethe approximation. In
probabilistic inference, the quantity Mx ′,y ′

x,y (ξ) is referred to as a message propagated from
(x ′, y ′) to (x, y). If we substitute equations (34) and (35) into equation (30), the deterministic
equations for Mx ′,y ′

x,y (ξ) can be derived as

Mx ′,y ′
x,y (ξ) =

∫ +∞
−∞φ(ξ, ξ ′)ψx ′,y ′(ξ ′)

∏
(x ′′,y ′′)∈cx′ ,y′ \(x,y)M

x ′′,y ′′
x ′,y ′ (ξ ′) dξ ′∫ +∞

−∞
∫ +∞
−∞φ(ξ ′′, ξ ′)ψx ′,y ′(ξ ′)

∏
(x ′′,y ′′)∈cx′ ,y′ \(x,y)M

x ′′,y ′′
x ′,y ′ (ξ ′) dξ ′ dξ ′′ . (36)
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In the Bethe approximation, the free energy F = −lnZ of the probabilistic model defined by
equations (16)–(19) is approximately expressed as

F = −lnZ � −
∑

(x,y)∈�

lnZx,y −
∑

(x,y)∈�

(
lnZx+1,y

x,y − lnZx,y − lnZx+1,y

)
−

∑
(x,y)∈�

(
lnZx,y+1

x,y − lnZx,y − lnZx,y+1
)
, (37)

which is the extreme value of the Bethe free energy FBethe
[{

ρx,y, ρ
x+1,y
x,y , ρ

x+1,y
x,y

∣∣(x, y) ∈ �
}]

with respect to the marginal probability distributions
{
ρx,y, ρ

x+1,y
x,y , ρ

x,y+1
x,y

∣∣(x, y) ∈ �
}

under
the constraint conditions given in equations (29) and (30). We remark that the Bethe free
energy FBethe

[{
ρx,y, ρ

x+1,y
x,y , ρ

x,y+1
x,y

∣∣(x, y) ∈ �
}]

does not provide a bound for the true
free energy F = −lnZ , whereas a mean-field free energy is a bound for the true free
energy [2]. In the Bethe free energy FBethe

[{
ρx,y, ρ

x+1,y
x,y , ρ

x,y+1
x,y |(x, y) ∈ �

}]
, the first

term
∑

(x,y)∈�Fx,y[ρx,y] can be regarded as the contribution of each single pixel. The

second term
∑

(x,y)∈�

(
Fx+1,y

x,y

[
ρ

x+1,y
x,y

] − Fx,y[ρx,y] − Fx+1,y[ρx+1,y]
)

and the third term∑
(x,y)∈�

(
Fx,y+1

x,y

[
ρ

x,y+1
x,y

] − Fx,y[ρx,y] − Fx,y+1[ρx,y+1]
)

correspond to the contributions of
nearest-neighbour pairs of pixels. The right-hand side of equation (31) implies that we are
neglecting the other free energies for many-body marginal probability distributions for sets
of pixels that are larger than the nearest-neighbour pairs. The mean-field approximation
corresponds to the minimization of the approximate free energy FMF[{ρx,y |(x, y) ∈ �}]
obtained by setting ρ

x ′,y ′
x,y (ξ, ξ ′) = ρx,y(ξ)ρx ′,y ′(ξ ′) in the right-hand side of equation (31).

These then are the physical interpretations of the mean-field and Bethe approximations.
Now we assume that Mx ′,y ′

x,y (ξ) can be approximately expressed as

Mx ′,y ′
x,y (ξ) �

√
λ

x ′,y ′
x,y

2π
exp

(
−λ

x ′,y ′
x,y

2

(
ξ − µx ′,y ′

x,y

)2

)
. (38)

The simultaneous fixed-point equation (36) can be reduced to the following equation:√
λ

x ′,y ′
x,y

2π
exp

(
−λ

x ′,y ′
x,y

2

(
ξ − µx ′,y ′

x,y

)2

)

= 1√
(2π)2det

(
Kx ′,y ′

x,y

)∫ +∞

−∞
exp

(
−1

2

((
ξ

ξ ′

)
− Kx ′,y ′

x,y ux ′,y ′
x,y

)T

×(
Kx ′,y ′

x,y

)−1
((

ξ

ξ ′

)
− Kx ′,y ′

x,y ux ′,y ′
x,y

))
dξ ′, (39)

where

Kx ′,y ′
x,y ≡


α −α

−α β + α +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y)

λ
x ′′,y ′′
x ′,y ′


−1

, (40)

ux ′,y ′
x,y ≡


0

βgx ′,y ′ +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y)

µ
x ′′,y ′′
x ′,y ′ λ

x ′′,y ′′
x ′,y ′

 . (41)



Accuracy of the Bethe approximation in probabilistic image processing 8683

Multiplying by ξ 2 and ξ and integrating both sides of equation (39) with respect to ξ , we can
derive the following fixed-point equations for

{
λ

x ′,y ′
x,y , µ

x ′,y ′
x,y

∣∣(x ′, y ′) ∈ cx,y, (x, y) ∈ �
}
:

1

λ
x ′,y ′
x,y

= 1

α
+

1

β +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y)λ
x ′′,y ′′
x ′,y ′

, (42)

µx ′,y ′
x,y =

βgx ′,y ′ +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y)µ
x ′′,y ′′
x ′,y ′ λ

x ′′,y ′′
x ′,y ′

β +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y)λ
x ′′,y ′′
x ′,y ′

. (43)

If we substitute equation (38) into equations (34) and (35), the one- and two-body marginal
probability densities are approximately rewritten as follows:

ρx,y(ξ) �
√

β +
∑

(x ′,y ′)∈cx,y
λ

x ′,y ′
x,y

2π

× exp

−1

2

β +
∑

(x ′,y ′)∈cx,y

λx ′,y ′
x,y

ξ −
βgx,y +

∑
(x ′,y ′)∈cx,y

µ
x ′,y ′
x,y λ

x ′,y ′
x,y

β +
∑

(x ′,y ′)∈cx,y
λ

x ′,y ′
x,y

2
 ,

(44)

ρx ′,y ′
x,y (ξ, ξ ′) � 1√

(2π)2det
(
Rx ′,y ′

x,y

)
× exp

(
−1

2

((
ξ

ξ ′

)
− Rx ′,y ′

x,y vx ′,y ′
x,y

)T (
Rx ′,y ′

x,y

)−1
((

ξ

ξ ′

)
− Rx ′,y ′

x,y vx ′,y ′
x,y

))
, (45)

where

Rx ′,y ′
x,y ≡


β + α +

∑
(x ′′,y ′′)∈cx,y\(x ′,y ′)

λ
x ′′,y ′′
x,y −α

−α β + α +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y)

λ
x ′′,y ′′
x ′,y ′


−1

, (46)

vx ′,y ′
x,y ≡


βgx,y +

∑
(x ′′,y ′′)∈cx,y\(x ′,y ′)

µ
x ′,y ′
x,y λ

x ′,y ′
x,y

βgx ′,y ′ +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y)

µ
x,y

x ′,y ′λ
x,y

x ′,y ′

 . (47)

The mean mx,y defined by equation (20) can be calculated by means of the equation

mx,y =
∫ +∞

−∞
ξρx,y(ξ) dξ �

βgx,y +
∑

(x ′,y ′)∈cx,y
µ

x ′,y ′
x,y λ

x ′,y ′
x,y

β +
∑

(x ′,y ′)∈cx,y
λ

x ′,y ′
x,y

. (48)

In terms of λ
x ′,y ′
x,y and µ

x ′,y ′
x,y , the normalization constants Zx,y and Zx ′,y ′

x,y in equations (34)
and (35) are expressed as

lnZx,y = 1

2
ln(2π) +

1

2

∑
(x ′′,y ′′)∈cx,y

ln

(
λ

x ′′,y ′′
x,y

2π

)
− 1

2
ln

β +
∑

(x ′′,y ′′)∈cx,y

λx ′′,y ′′
x,y

 − 1

2
βgx,y

2

+

(
βgx,y +

∑
(x ′′,y ′′)∈cx,y

µ
x ′′,y ′′
x,y λ

x ′′,y ′′
x,y

)2

2
(
β +

∑
(x ′′,y ′′)∈cx,y

λ
x ′′,y ′′
x,y

) − 1

2

∑
(x ′′,y ′′)∈cx,y

(
µx ′′,y ′′

x,y

)2
λx ′′,y ′′

x,y , (49)
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lnZx ′,y ′
x,y = ln(2π) +

1

2

∑
(x ′′,y ′′)∈cx,y\(x ′,y ′)

ln

(
λ

x ′′,y ′′
x,y

2π

)
+

1

2

∑
(x ′′,y ′′)∈cx′ ,y′ \(x,y)

ln

(
λ

x ′′,y ′′
x ′,y ′

2π

)

+
1

2
ln

(
det

(
Rx ′,y ′

x,y

))
+

1

2

(
vx ′,y ′

x,y

)T
Rx ′,y ′

x,y vx ′,y ′
x,y − 1

2
βgx,y

2 − 1

2
βgx ′,y ′ 2

− 1

2

∑
(x ′′,y ′′)∈cx,y\(x ′,y ′)

(
µx ′′,y ′′

x,y

)2
λx ′′,y ′′

x,y − 1

2

∑
(x ′′,y ′′)∈cx′ ,y′ \(x,y)

(
µ

x ′′,y ′′
x ′,y ′

)2
λ

x ′′,y ′′
x ′,y ′ , (50)

respectively. By substituting equations (49) and (50) into equation (37), we obtain the
approximate value of the free energy F = −lnZ in the Bethe approximation.

In dealing with equations (42) and (43), the free energy F is obtained by solving the
simultaneous fixed-point equations (42) and (43) numerically and by substituting the set of
solutions

{
λ

x ′,y ′
x,y , µ

x ′,y ′
x,y

∣∣(x ′, y ′) ∈ cx,y, (x, y) ∈ �
}

into the right-hand side of equation (37)
with equations (49) and (50). The simultaneous fixed-point equations (42) and (43) are solved
by the following iterative algorithm.

Iterative algorithm for solving the simultaneous fixed-point equations (42) and (43)

Step 1. Set r ← 0 as an initial value.
Step 2. Update r ← r + 1 and

ax ′,y ′
x,y (r) ←

 1

α
+

1

β +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y) a
x ′′,y ′′
x ′,y ′ (r − 1)

−1

, (51)

bx ′,y ′
x,y (r) ←

βgx ′,y ′ +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y) b
x ′′,y ′′
x ′,y ′ (r − 1)a

x ′′,y ′′
x ′,y ′ (r − 1)

β +
∑

(x ′′,y ′′)∈cx′ ,y′ \(x,y)a
x ′′,y ′′
x ′,y ′ (r − 1)

. (52)

Step 3. Update R ← r , λ
x ′,y ′
x,y ← a

x ′,y ′
x,y (R) and µ

x ′,y ′
x,y ← b

x ′,y ′
x,y (R)((x, y) ∈ �). Stop if, for

pre-specified ε,∑
(x,y)∈�

∑
(x ′,y ′)∈cx,y

(∣∣ax ′,y ′
x,y (r) − ax ′,y ′

x,y (r − 1)
∣∣ +

∣∣bx ′,y ′
x,y (r) − bx ′,y ′

x,y (r − 1)
∣∣) < ε, (53)

and go to step 2 otherwise.

Again, it is usually adequate to set ε = 10−6. In the denominators of equations (51) and (52),
the summations

∑
(x ′′,y ′′)∈cx′ ,y′ \(x,y)a

x ′′,y ′′
x ′,y ′ (r −1) and

∑
(x ′′,y ′′)∈cx′ ,y′ \(x,y)b

x ′′,y ′′
x ′,y ′ (r −1)a

x ′′,y ′′
x ′,y ′ (r −1)

can be evaluated in O(1) time per pair of pixels (x, y) and (x ′, y ′), because the number of
elements in the set cx ′,y ′ \(x, y) is equal to 3 per pair of pixels. Hence the iterative algorithm
for solving the simultaneous fixed-point equations (42) and (43) requires a total of O(|�|)
computations per update.

The results obtained for F = −lnZ by setting β = 1/σ 2 and β = 0 correspond to
FPOS(g, α, σ ) ≡ −lnZPOS(g, α, σ ) and FPR(α) ≡ −lnZPR(α), respectively. By substituting
these results in equation (11), we can calculate the approximate values of the marginal
likelihood P(G = g|α, σ ) for any values of α and σ in the mean-field and Bethe
approximations.

4. Numerical experiments

In this section, we present the results of some numerical experiments for the restoration of
grey-level images. The optimal values for the hyperparameters, (̂α, σ̂ ), are determined by
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(a) (b)

(d) (e)

(c)

Figure 1. Image restoration based on the Gaussian graphical model. The original image f is
generated from the a priori probability distribution (3). (a) Original image f (α = 0.0010).
(b) Degraded image g (σ = 40). (c) Restored image f̂ obtained by the mean-field approximation
(̂α = 0.000 298, σ̂ = 29.054). (d) Restored image f̂ obtained by the Bethe approximation
(̂α = 0.000 784, σ̂ = 37.773). (e) Restored image f̂ obtained by the exact calculation
(̂α = 0.001 086, σ̂ = 39.362).

means of maximum marginal likelihood estimation, and the values of the marginal likelihood
are calculated by using the exact expression (12), the mean-field approximation and the Bethe
approximation.

In the present paper, our framework for Bayesian image restoration uses a Gaussian
graphical model and considers a continuous random variable for the intensity at each pixel in
the original and the degraded images. However, in practical images in computer vision, the
intensity of light at each pixel is represented as an integer chosen from the set {0, 1, . . . , 255}.
In our numerical experiments, we apply the framework established in the previous sections to
images consisting of integers {0, 1, . . . , 255}. Instead of equation (10), we use

f̂ x,y ≡ arg min
n=0,1,...,255

(
n −

∫
zx,yP(F = z|G = g, α̂, σ̂ ) dz

)2

. (54)

To evaluate restoration performance quantitatively, 20 original images f are simulated
from the a priori probability density (3) for the Gaussian graphical model. We produce three
degraded images g from each original image f by means of the degradation process (2) for
σ = 30, 40 and 50, respectively. By applying the exact expression in section 2 and iterative
algorithms for obtaining the mean-field and Bethe approximations in section 4 to each degraded
image g, we obtain estimates of the hyperparameters α̂ and σ̂ and the restored image f̂ for each
degraded image g. For the case α = 0.0010 and σ = 40, one of the numerical experiments
is shown in figure 1. In order to illustrate the maximization of the marginal likelihood, we
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Figure 2. σ -dependence of the logarithm of the marginal likelihood per pixel, L(g, α̂, σ ) ≡
1

|�| lnP(G = g|̂α, σ ), for the image restorations shown in figure 1, where α̂ = 0.000 298,

0.000 784, 0.001 086 for the mean-field approximation, the Bethe approximation and the exact
calculation, respectively. The full circles, the open circles and the double circles correspond to the
mean-field approximation, the Bethe approximation and the exact calculation, and give maximum
values at σ = 29.054, 37.773, 39.362, respectively.
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Figure 3. α-dependence of the logarithm of the marginal likelihood per pixel, L(g, α, σ̂ ) ≡
1

|�| lnP(G = g|α, σ̂ ), for the image restorations shown in figure 1, where σ̂ = 29.054, 37.773,

39.362 for the mean-field approximation, the Bethe approximation and the exact calculation,
respectively. The full circles, the open circles and the double circles correspond to the mean-field
approximation, the Bethe approximation and the exact calculation, and give maximum values at
α = 0.000 298, 0.000 784, 0.001 086, respectively.

display, in figures 2 and 3, σ - and α-dependences of L(g, α, σ ) ≡ 1
|�| lnP(G = g|α, σ ),

corresponding to the image restorations shown in figure 1, respectively. In figure 2 α is fixed
at α̂ and in figure 3 σ is fixed at σ̂ . From the 20 degraded images g and the corresponding
restored images f̂ , we calculate 95% confidence intervals for the hyperparameters, α and σ ,
and the values of the mean-squared error d(f , f̂), defined by

d(f , f̂) ≡ 1

|�|
∑

(x,y)∈�

(fx,y − f̂ x,y)
2. (55)

These confidence intervals are given in table 1. Although clearly the true values of the
hyperparameters, α and σ , lie outside the 95% confidence intervals based on the mean-field
and the Bethe approximations, the confidence interval based on the Bethe approximation
is considerably closer to the true value and to the confidence interval based on the exact
calculation than that provided by the mean-field approximation. Thus there is a substantial
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(a) (b)

Figure 4. Original images: (a) Lena; (b) Mandrill.

Table 1. Approximate 95% confidence intervals for the hyperparameters, α and σ , and the values
of L(g, α̂, σ̂ ) ≡ 1

|�| lnP(G = g|̂α, σ̂ ) and d(f , f̂) obtained for some degraded images g, which
are produced for σ = 30, 40, 50 from 20 original images f . The 20 original images are generated
by Monte Carlo simulation from the a priori probability distribution (3) for the Gaussian graphical
model (α = 0.001). The hyperparameters are estimated by applying the mean-field approximation,
the Bethe approximation and the exact method to maximum marginal likelihood estimation.

Mean-field approximation Bethe approximation Exact

σ = 30
α̂ [0.000 4100, 0.000 4133] [0.000 8565, 0.000 8718] [0.001 0117, 0.001 0372]
σ̂ [21.595, 21.769] [28.585, 28.769] [29.58 360, 29.78 772]
L(g, α̂, σ̂ ) [−4.9118,−4.9085] [−4.9724,−4.9694] [−4.9955,−4.9925]
d(f , f̂) [367.32, 370.28] [244.17, 245.18] [242.25, 243.46]

σ = 40
α̂ [0.000 2941, 0.000 2962] [0.000 7603, 0.000 7728] [0.001 0435, 0.001 0689]
σ̂ [29.019, 29.141] [37.760, 37.857] [39.353, 39.460]
L(g, α̂, σ̂ ) [−5.137 05, −5.135 11] [−5.190 08, −5.188 11] [−5.211 23,−5.209 23]
d(f , f̂) [536.42, 540.10] [301.38, 302.26] [295.58, 296.81]

σ = 50
α̂ [0.000 2219, 0.000 2207] [0.000 6705, 0.000 6805] [0.001 0755, 0.001 1074]
σ̂ [36.200, 36.317] [46.551, 46.646] [48.782, 48.669]
L(g, α̂, σ̂ ) [−5.320 64, −5.319 04] [−5.368 48, −5.366 89] [−5.387 80,−5.386 18]
d(f , f̂) [722.26, 726.68] [347.63, 349.53] [337.65, 335.41]

improvement in accuracy if we use the Bethe approximation rather than the mean-field
approximation for hyperparameter estimation.

We then performed numerical experiments based on the artificial images in figure 4.
Degraded images g are produced from the original images f with σ = 30, 40 and 50. The
degraded images g for σ = 40 are shown in figure 5. The image restorations created by means
of the mean-field approximation, the Bethe approximation and the exact calculation for the
Gaussian graphical model are shown in figures 6(a)–(c) and figures 7(a)–(c). We give in table 2
the estimates, σ̂ and α̂, of the hyperparameters, and the values of the mean-squared error
d(f , f̂). For the practical images, we again find that the estimates of the hyperparameters,
α̂ and σ̂ , provided by the Bethe approximation are closer to the exact results than those
based on the mean-field approximation. Particularly in the context of the mean-squared error
measure, the Bethe approximation again provides a clear improvement over the mean-field
approximation and does nearly as well as the exact method. Of course we have to bear in
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(a) (b)

Figure 5. Degraded images (σ = 40): (a) Lena; (b) Mandrill.

(a) (b) (c)

(d) (e) (f)

Figure 6. Restored images f̂ obtained from the degraded image g given in figure 5(a).
(a) Mean-field approximation. (b) Bethe approximation. (c) Exact. (d) Lowpass filter with window
size 5 × 5. (e) Wiener filter with window size 5 × 5. ( f ) Median filter with window size 5 × 5.

mind that real images are not generated from the model for which the above exact method
is correct, but the performance of the Bethe approximation is nevertheless very encouraging.

Another important point is to note that the probabilistic methods appear to do better
than conventional filter methods in image processing, as we now illustrate. For the
degraded images shown in figure 5, we apply the (2n + 1)×(2n + 1) lowpass filter, the
(2n + 1)×(2n + 1) Wiener filter and the (2n + 1)×(2n + 1) median filter for n = 1, 2
[25, 26]. In the (2n + 1)×(2n + 1) lowpass filter, the output f̂ x,y is the average of the
inputs {gx ′,y ′ |x −n � x ′ � x + n, y −n � y ′ � y + n}. In the (2n + 1)×(2n + 1) median filter,
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(a) (b) (c)

(d) (e) (f)

Figure 7. Restored images f̂ obtained from the degraded image g given in figure 5(b).
(a) Mean-field approximation. (b) Bethe approximation. (c) Exact. (d) Lowpass filter with window
size 5×5. (e) Wiener filter with window size 5 × 5. ( f ) Median filter with window size 5 × 5.

the output f̂ x,y is the median of the inputs {gx ′,y ′ |x − n � x ′ � x + n, y − n � y ′ � y + n}.
In the (2n + 1)×(2n + 1) Wiener filter, the output f̂ x,y is

f̂ x,y = ax,y +
bx,y − ν

bx,y

(gx,y − ax,y), (56)

where ax,y and bx,y are the ‘sample’ average and the ‘sample’ variance of the inputs
{gx ′,y ′ |x − n � x ′ � x + n, y − n � y ′ � y + n}, respectively, and ν is the average of {bx,y |
(x, y) ∈ �}. Some of the restored images f̂ obtained by applying the lowpass filter, the Wiener
filter and the median filter to the degraded images given in figure 5 are shown in figures 6(d)–
(g) and figures 7(d)–(g). The mean-squared errors d(f , f̂) for the restored images obtained
by means of the conventional filters are given in table 3. The (3 × 3) filters cannot erase the
noise to a satisfactory level in terms of mean-squared error. If (5×5) filters are used, the noise
can be erased adequately, but the restored image is blurred. It is obvious that, in ‘Mandrill’,
the results obtained by the approach in this paper, based on a prior Gaussian graphical model,
are better than those based on conventional filters. However, the situation with ‘Lena’ seems
to be different. Comparison of the results for ‘Lena’ in tables 2 and 3 shows that the mean-
squared errors d(f , f̂) of the mean-field approximation, the Bethe approximation and the
exact calculation are all greater than that of the (5 × 5) lowpass filter.

The Tikhonov method is also often applied to grey-level image restoration in conventional
image processing [27]. The algorithm is based on the framework of the constrained least mean
square filter [28]. For a given degraded image g = {gx,y |(x, y) ∈ �} in which the degradation
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Table 2. Estimates of hyperparameters, α̂ and σ̂ , and the values of L(g, α̂, σ̂ ) ≡ 1
|�| lnP(G =

g|̂α, σ̂ ) and d(f , f̂) obtained by using the mean-field approximation (MFA), the Bethe
approximation and the exact calculation. The degraded images g are produced for σ = 30, 40, 50
from the original images f in figure 4.

σ d(f , g) Method α̂ σ̂ L(g, α̂, σ̂ ) d(f , f̂)

Lena
MFA 0.000 393 16.762 −4.829 57 433

30 813 Bethe 0.000 546 21.716 −4.903 78 279
Exact 0.000 558 21.976 −4.928 85 272

MFA 0.000 288 24.417 −5.063 65 593
40 1409 Bethe 0.000 484 31.315 −5.128 98 324

Exact 0.000 517 31.960 −5.153 67 306

MFA 0.000 223 31.291 −5.243 89 765
50 2109 Bethe 0.000 437 39.826 −5.302 62 375

Exact 0.000 493 40.878 −5.326 48 346

Mandrill
MFA 0.000 358 19.518 −4.911 11 425

30 861 Bethe 0.000 645 26.846 −4.979 30 262
Exact 0.000 708 27.636 −5.003 78 255

MFA 0.000 270 27.453 −5.132 21 591
40 1512 Bethe 0.000 613 36.469 −5.190 71 325

Exact 0.000 757 37.857 −5.213 51 315

MFA 0.000 211 34.771 −5.309 52 766
50 2291 Bethe 0.000 573 45.276 −5.361 27 380

Exact 0.000 802 47.156 −5.382 26 364

Table 3. Values of d(f , f̂) obtained by using the lowpass filters, Wiener filters and median filters
with window sizes 3 × 3 and 5 × 5. The degraded images g are produced for σ = 30, 40, 50 from
the original images f in figure 4.

σ d(f , g) Window size Lowpass Wiener Median

Lena
3 × 3 185 492 220

30 813
5 × 5 232 369 202

3 × 3 258 492 339
40 1409

5 × 5 268 369 259

3 × 3 350 903 484
50 2109

5 × 5 311 518 320

Mandrill
3 × 3 312 653 370

30 861
5 × 5 384 485 401

3 × 3 447 848 488
40 1512

5 × 5 411 545 447

3 × 3 478 1080 439
50 2291

5 × 5 447 627 504

takes the form of additive white Gaussian noise with mean 0 and variance σ 2, the most basic
constrained least mean square filter is defined by
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(a) (b)

Figure 8. Restored images f̂ obtained from the degraded image g by using the constrained least
mean square filter. (a) Lena. (b) Mandrill.

Table 4. Values of d(f , f̂) obtained by using the constrained least mean square filter. The
degraded images g are produced for σ = 30, 40, 50 from the original images f in figure 4.

σ = 30 σ = 40 σ = 50

Lena 273 414 651
Mandrill 297 372 458

f̂ = arg min
z:d(z,g)=σ 2

 ∑
(x,y)∈�

((zx,y − zx+1,y)
2 + (zx,y − zx,y+1)

2)

 , (57)

where d(z, g) is defined by equation (55). Some of the restored images f̂ obtained by
applying the constrained least mean square filter to the degraded images in figure 5 are shown
in figure 8. The mean-squared errors d(f , f̂) for the restored images obtained by means of
the constrained least mean square filter are given in table 4.

Before closing the present section, we report the number of iterations, R, and the
computation times necessary for the iterative algorithms for solving the simultaneous fixed-
point equations in the mean-field and Bethe approximations. We performed the present
numerical experiments on a SONY VAIO PCG-GRT77E/P personal computer with a Pentium4
Processor and 1 GByte of memory. For example, for solving the simultaneous fixed-point
equations, given (̂α, σ̂ ), in the production of the results for figures 7(a) and (b) with the
mean-field and Bethe approximations, the numbers of iterations are R = 15 and R = 42,
respectively, and the corresponding computational times are 0.688 s and 10.391 s, respectively.
For the lowpass, median and the Wiener filters with window sizes 5×5, the computation times
are approximately 0.1 s, 0.3 s and 0.1 s, respectively, and the computation time for obtaining
each result for the constrained least mean square filter is approximately 3 s. We expect that the
computation times for the mean-field and Bethe approximations can be significantly reduced
by improving the algorithms, especially the procedure for calculating α̂ and σ̂ , which is quite
time-consuming.

5. Concluding remarks

In this paper, we have studied the accuracy of hyperparameter estimation based on the Bethe
approximation. The estimates of the hyperparameters are determined so as to maximize the
marginal likelihood. The marginal likelihood can be expressed in terms of the free energies
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of the prior probabilistic model and the posterior probabilistic model. Hence the marginal
likelihood can be calculated approximately by using the Bethe approximation or the mean-
field approximation. The main purpose of this paper is to examine the accuracy of the
hyperparameter estimates as obtained by maximizing the marginal likelihood as calculated
approximately by means of the Bethe approximation. In the calculation, we have adopted
a Gaussian graphical model, representing local spatial correlation, as the prior probabilistic
model in Bayes’ formula. This provides a probabilistic model for image restoration which
can be treated analytically by using the multi-dimensional Gauss integral formula and the
discrete Fourier transformation. We have therefore been able to compare the results based
on the mean-field and Bethe approximations with those from the exact calculation. In the
estimation of the hyperparameters, biases, relative to the exact results, are incurred with the
Bethe approximation and the mean-field approximation. These tendencies appear not only in
the context of practical real-world images but also with images generated from the proposed
a priori probability distribution (3). However, the results obtained by the Bethe approximation
represent substantial improvements over those obtained by the mean-field approximation.

As we have already mentioned in section 1, Weiss and Freeman [7] have pointed out that,
in the Bethe approximation for the Gaussian graphical model, the accuracy of the average is
good but that of the variance is not adequate. We believe that this lack of accuracy for the
variance leads to the biases in the estimates of the hyperparameters, compared to the exact
results, in the experiments.

Other models exist which are applicable to probabilistic image processing and which
can be treated analytically by using the multi-dimensional Gauss formula and the discrete
Fourier transformation [17–19]. It would be interesting to investigate how well the Bethe
approximation and the mean-field approximation perform, relative to the exact methods, in
such solvable models. This is a problem for the future.

Though each pixel intensity takes a real value in the range (−∞, +∞) in the present paper,
we can also consider the case in which the light intensity fx,y is not real valued but takes an
integer value from the set {0, 1, 2, . . . ,Q − 1} for a fixed positive and finite integer Q. In this
case, it is hard to calculate the marginal likelihood P(G = g|α, σ ), and Tanaka et al [29, 30]
investigated the maximization of the marginal likelihood with the Bethe approximation in this
context. Moreover, Tanaka and Titterington [31] compared the results obtained by the Bethe
approximation with those obtained by the mean-field approximation, and showed that the
Bethe approximation substantially improved upon the mean-field approximation. In [29–31],
the simultaneous fixed-point equations for

{
Mx ′,y ′

x,y (ξ)
∣∣(x, y) ∈ �, (x ′, y ′) ∈ cx,y

}
in the Bethe

approximation for any finite positive integer Q have been shown to take the form

Mx ′,y ′
x,y (ξ) =

∑Q−1
ξ ′=0φ(ξ, ξ ′)ψx ′,y ′(ξ ′)

∏
(x ′′,y ′′)∈cx′ ,y′ \(x,y)M

x ′′,y ′′
x ′,y ′ (ξ ′)∑Q−1

ξ ′=0

∑Q−1
ξ ′′=0φ(ξ ′′, ξ ′)ψx ′,y ′(ξ ′)

∏
(x ′′,y ′′)∈cx′,y′ \(x,y)M

x ′′,y ′′
x ′,y ′ (ξ ′)

(58)

instead of equation (36). In this case, the simultaneous fixed-point equations (58) for each
pair of pixels (x, y) and (x ′, y ′) can be evaluated in O(Q2) computations, which implies that
a total of O(Q2|�|) computations are required per update. In [29–31], we treated the case of
Q = 4 at most. If we consider the case of Q = 256, we need unrealistic computation time
and large amounts of memory and this is still beyond the capacity of present computers. In the
present paper, intensities with 256 grey levels are regarded as continuous variables and we treat
practical digital images by means of the Gaussian graphical models in equations (3) and (5).
It is a future problem to compare the present results with those from the Bethe approximation
for Q = 256.
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In the Bethe approximation, the approximate free energy for every probabilistic
model in equation (16) is given by equation (37). The simultaneous fixed-point
equations (34)–(36) are equivalent to the extremum conditions of the Bethe free energy
FBethe

[{
ρx,y, ρ

x+1,y
x,y , ρ

x,y+1
x,y

∣∣(x, y) ∈ �
}]

with respect to the marginal probability distributions{
ρx,y, ρ

x+1,y
x,y , ρ

x,y+1
x,y

∣∣(x, y) ∈ �
}

under the constraints (29) and (30). However, it is known that

the Bethe free energy FBethe
[{

ρx,y, ρ
x+1,y
x,y , ρ

x,y+1
x,y

∣∣(x, y) ∈ �
}]

does not provide a guaranteed
bound for the true free energy F = −lnZ , whereas a mean-field free energy does provide
such a bound [2]. Furthermore, in some cases the solution of the simultaneous fixed-point
equations (34)–(36) corresponds not to a local minimum but to a saddle point of the Bethe
free energy [41]. In spite of that, the present scheme provides satisfactory results. The Bethe
approximation often gives us poor results for some Ising models with frustration effects
[32, 33]. Frustration effects in probabilistic models cause poor results in the Bethe
approximation. The present a priori and a posteriori probabilistic models (3) and (5) have no
frustration effects since they correspond to the Gaussian graphical ones with spatially uniform
ferromagnetic interactions. This seems to be a qualitative explanation of why satisfactory
results are obtained in the present scheme in spite of the problems that can arise with the Bethe
approximation.

One extension of the Bethe approximation is the cluster variation method [34, 35].
Recently, some researchers in statistical mechanics and computer science have applied the
cluster variation method to the probabilistic information sciences [9, 36]. Tanaka, Inoue and
Titterington have set out a general scheme for the maximization of marginal likelihood based
on the cluster variation method [30]. However, the scheme has only been applied to simple
binary cases and not yet to practical computer vision contexts. On the other hand, some
attempts to apply new advanced mean-field methods to probabilistic information processing
problems have combined the Bethe approximation with the linear response formula or have
used the Thouless–Anderson–Palmer (TAP) equation [37, 38]. More detailed investigation of
the application of these methods to probabilistic image processing is also the subject of future
work.

The Bethe approximation has already been applied also to error-correcting codes in
coding theory [8] and to the code division multiple access (CDMA) systems in wireless
communication [39]. Moreover, Kanter and Kfir proposed a statistical-mechanical joint
source–channel decoder based on the transfer matrix method [40]. This idea is also applicable
to Bayesian image restoration. It may be useful to compare the present method with the
application of a statistical-mechanical joint source–channel decoder. This is left as a future
problem.

The main limitation of the present approach is that the degraded images g are obtained by
simply adding white Gaussian noise to the original image, without considering modifications
to represent the optical device used for image acquisition. If the impulse response of the
instrument is considered, the conditional probability density P(G = g|F = f) describing
the degradation process would assume a more complicated form. In such a case, we have
to treat equation (58), and not equations (42) and (43), as the relevant simultaneous fixed-
point equations. Though it is possible to solve such simultaneous fixed-point equations
numerically, a total of O(Q2|�|) operations are required per update in the iterative algorithm.
The whole computation would become much more involved and we would have to reduce
the computational complexity by combining certain other approximations with the Bethe
approximation. This also is a future problem.

As a more practical image restoration scheme, we can introduce into the prior probabilistic
model a line field u = {

u
x+1,y
x,y , u

x+1,y
x,y

∣∣(x, y) ∈ �
}
, so that instead of equation (3) we have
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P(F = f |α, γ ) ≡ 1

ZPR(α, γ )

∑
u

∏
(x,y)∈�

exp

(
−1

2
α
(
1 − ux+1,y

x,y

)
((fx,y − fx+1,y)

2 − γ 2)

− 1

2
α
(
1 − ux,y+1

x,y

)
((fx,y − fx,y+1)

2 − γ 2)

)
. (59)

Here a random variable u
x ′,y ′
x,y representing the edge is assigned to each nearest-neighbour pair

of pixels, (x, y) and (x ′, y ′). The states u
x ′,y ′
x,y = 1 and u

x ′,y ′
x,y = 0 correspond to the existence

or non-existence of an edge, respectively. The summation
∑

u ranges over all possible

values of the line fields u
x ′,y ′
x,y of all nearest-neighbour pairs of pixels, (x, y) and (x ′, y ′). In

this case, it is hard to calculate the marginal likelihood, P(G = g|α, γ, σ ) ≡ ∫
P(G =

g|F = z, σ )P(F = z|α, γ ) dz, analytically. For the posterior probabilistic model given by
P(F = f |G = g, α, γ, σ ) ≡ P(G = g|F = f , σ )P(F = f |α, γ )/P(G = g|α, γ, σ ), one
of the present authors has developed the belief propagation algorithm based on the cluster
variation method [42]. However, no one has yet succeeded in maximizing the marginal
likelihood P(G = g|α, γ, σ ) with respect to α, γ and σ based on any cluster variation
method, including the Bethe approximation. Moreover, we may have to consider models
including interactions within the line field u [13, 43]. Such a model is called a Gauss–Markov
random-field model. Further application of the Bethe approximation and the cluster variation
method (i.e. generalized belief propagation) to the maximization of the marginal likelihood
P(G = g|α, γ, σ ) in the Gauss–Markov random-field model will be another subject of future
research.
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